
Appendix B:
Perlin Noise

By mapping 3D coordinates to colors, we can create
volumetric texture. The input to the texture is local model
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow
rings, with darker wood from earlier in the year and
lighter wood from later in the year.

● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood +
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1 9

Adding realism

The teapot on the previous slide doesn’t look very wooden,
because it’s perfectly uniform. One way to make the
surface look more natural is to add a randomized noise
field to f(P):

f(P) = (XP
2+ZP

2 + noise(P)) mod 1
where noise(P) is a function that maps 3D coordinates in

space to scalar values chosen at random.

For natural-looking results, use
Perlin noise, which interpolates
smoothly between noise values.

10

Perlin noise
Perlin noise (invented by Ken Perlin) is a method for

generating noise which has some useful traits:
● It is a band-limited repeatable pseudorandom

function (in the words of its author, Ken Perlin)
● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended

arbitrarily in space, yet cached deterministically
• Perlin’s talk: http://www.noisemachine.com/talk1/

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker 11

Perlin noise 1
Perlin noise caches ‘seed’ random values on a grid at

integer intervals. You’ll look up noise values at
arbitrary points in the plane, and they’ll be
determined by the four nearest seed randoms on
the grid.

Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)}
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html12

Perlin noise 2
For each of the four corners, take the dot product of the

random seed vector with the vector from that corner to
(x, y). This gives you a unique scalar value per corner.

● As (x, y) moves across this cell of the grid, the values
of the dot products will change smoothly, with no
discontinuity.

● As (x, y) approaches a grid point, the contribution from
that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a range
close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)

13

Perlin noise 3
Now we take a weighted average of LL, LR, UL, UR.

Perlin noise uses a weighted averaging function chosen
such that values close to zero and one are moved closer
to zero and one, called the ease curve:
S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:
noise(x, y) =

 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))
Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’

14

Perlin Noise - References

● https://web.archive.org/web/20160303232627/http://www.noisemach
ine.com/talk1/

● http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perli
n-noise-math-faq.html

15

